Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma
نویسندگان
چکیده
Dysregulation of signaling pathways and energy metabolism in cancer cells enhances production of mitochondrial hydrogen peroxide that supports tumorigenesis through multiple mechanisms. To counteract the adverse effects of mitochondrial peroxide many solid tumor types up-regulate the mitochondrial thioredoxin reductase 2--thioredoxin 2 (TRX2)--peroxiredoxin 3 (PRX3) antioxidant network. Using malignant mesothelioma cells as a model, we show that thiostrepton (TS) irreversibly disables PRX3 via covalent crosslinking of peroxidatic and resolving cysteine residues in homodimers, and that targeting the oxidoreductase TRX2 with the triphenylmethane gentian violet (GV) potentiates adduction by increasing levels of disulfide-bonded PRX3 dimers. Due to the fact that activity of the PRX3 catalytic cycle dictates the rate of adduction by TS, immortalized and primary human mesothelial cells are significantly less sensitive to both compounds. Moreover, stable knockdown of PRX3 reduces mesothelioma cell proliferation and sensitivity to TS. Expression of catalase in shPRX3 mesothelioma cells restores defects in cell proliferation but not sensitivity to TS. In a SCID mouse xenograft model of human mesothelioma, administration of TS and GV together reduced tumor burden more effectively than either agent alone. Because increased production of mitochondrial hydrogen peroxide is a common phenotype of malignant cells, and TS and GV are well tolerated in mammals, we propose that targeting PRX3 is a feasible redox-dependent strategy for managing mesothelioma and other intractable human malignancies.
منابع مشابه
Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells
Peroxiredoxin 3 (PRX3), a typical 2-Cys peroxiredoxin located exclusively in the mitochondrial matrix, is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide, a byproduct of cellular respiration originating from the mitochondrial electron transport chain. Mitochondrial oxidants are produced in excess in cancer cells due to oncogenic transformation and metabolic...
متن کاملPeroxiredoxin 3 Is a Redox-Dependent Target of Thiostrepton in Malignant Mesothelioma Cells
Thiostrepton (TS) is a thiazole antibiotic that inhibits expression of FOXM1, an oncogenic transcription factor required for cell cycle progression and resistance to oncogene-induced oxidative stress. The mechanism of action of TS is unclear and strategies that enhance TS activity will improve its therapeutic potential. Analysis of human tumor specimens showed FOXM1 is broadly expressed in mali...
متن کاملMitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells.
Malignant mesothelioma (MM) is an intractable tumor of the peritoneal and pleural cavities primarily linked to exposure to asbestos. Recently, we described an interplay between mitochondrial-derived oxidants and expression of FOXM1, a redox-responsive transcription factor that has emerged as a promising therapeutic target in solid malignancies. Here we have investigated the effects of nitroxide...
متن کاملUnique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma
Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control me...
متن کاملSialic acid-binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumor effects with TRAIL
Malignant mesothelioma is a highly aggressive tumor with poor prognosis. An effective drug for treatment of malignant mesothelioma is greatly needed. Sialic acid-binding lectin (SBL) isolated from oocytes of Rana catesbeiana is a multifunctional protein which has lectin activity, ribonuclease activity and antitumor activity, so it could be developed as a new type of anticancer drug. The validit...
متن کامل